|
DEX-AR: A Dynamic Explainability Method for Autoregressive Vision-Language Models
Walid Bousselham,
Angie Boggust,
Hendrik Strobelt,
Hilde Kuehne
arXiv, 2025
(coming soon on ArXiv)
|
|
MaskInversion: Localized Embeddings via Optimization of Explainability Maps
Walid Bousselham,
Sofian Chaybouti,
Christian Rupprecht,
Vittorio Ferrari,
Hilde Kuehne
arXiv, 2024
Project Page
/
Code
/
arXiv
|
|
LeGrad: An Explainability Method for Vision Transformers via Feature Formation Sensitivity
Walid Bousselham,
Angie Boggust,
Sofian Chaybouti,
Hendrik Strobelt,
Hilde Kuehne
arXiv, 2024
Project Page
/
Code
/
arXiv
/
Demo
|
|
Grounding Everything: Emerging Localization Properties in Vision-Language Transformers
Walid Bousselham,
Felix Petersen,
Vittorio Ferrari,
Hilde Kuehne
CVPR, 2024
Code
/
arXiv
/
Demo
|
|
Learning Situation Hyper-Graphs for Video Question Answering
Aisha Urooj,
Hilde Kuehne,
Bo Wu,
Kim Chheu,
Walid Bousselham,
Chuang Gan,
Niels Lobo,
Mubarak Shah
CVPR, 2023
Code
/
arXiv
|
|
Efficient Self-Ensemble for Semantic Segmentation
Walid Bousselham,
Guillaume Thibault,
Lucas Pagano,
Archana Machireddy,
Joe Gray,
Young Hwan Chang,
Xubo Song
BMVC, 2022
Code
/
arXiv
/
video
|
|
MaskInversion
A library for generating localized embeddings of CLIP-like models via optimization of explainability maps.
pip install maskinversion_torch
GitHub
/
PyPI
|
|
LeGrad
An explainability method for Vision Transformers that, given a text prompt, generates a heatmap localizing the part of the image that is important for the model to recognize the text prompt.
pip install legrad_torch
GitHub
/
PyPI
|
|
GEM (Grounding Everything Method)
A library for exploring emerging localization properties in Vision-Language Transformers.
pip install gem_torch
GitHub
/
PyPI
|
|
Data Stream
A Python tool for streaming data from remote servers to local compute resources, particularly useful for training models on large datasets stored remotely without requiring local storage (developed for internal use).
pip install data-streaming
GitHub
/
PyPI
|
|